

SPP 2514

Kickoff | Working Groups | YIN | Q-STAV

Logo

Mailing List

The newsletter will be distributed via the mailing list spp2514-newsletter@lists.kit.edu

If you would like to subscribe to this list, please send an empty email to sympa@lists.kit.edu with the subject: subscribe spp2514-newsletter@lists.kit.edu

Name Surname

LinkedIn

Please feel free to follow our LinkedIn profile where we frequently publish updates about the priority programme

What an inspiring start!

On 26 November, we officially celebrated the start of the DFG Priority Programme 2514 "Quantum Software, Algorithms and Systems" in Berlin! This exciting six-year research initiative drives foundational methods and tools for the quantum software stack.

The kickoff workshop brought together researchers from computer science, physics, mathematics and engineering to exchange ideas, build connections, and set the stage for interdisciplinary collaboration over the coming years.

We are proud to highlight the diversity of projects that form this programme, addressing key challenges in quantum computing from multiple angles – quantum algorithmic foundations; quantum programming languages, patterns and environments; quantum simulation, compilation, optimization; quantum systems co-design and engineering; benchmarking, analysis and simulation.

The energy, enthusiasm and broad engagement across all these disciplines and involved institutions is a strong signal that an active and vibrant community is developing around this initiative.

A huge thank you to everyone who participated, shared insights, and helped make the kickoff a success. We're looking forward to a productive journey together!

Projects

The SPP 2514 consists of the following 13 projects, lead by the listed PIs.

P1: Practical Measurement-based Quantum Computing

PIs: Stefanie Barz, Anna Pappa

P2: Error-Aware Compilation of Quantum Circuits for the Rydberg Atom Platform (ECQuRyd)

PIs: Hans Peter Büchler, Ilia Polian, Sebastian Weber

P3: ACE-QC Fully Classical and Efficient Autonomous Calibration of Quantum Computers

PIs: Tommaso Calarco, Mariami Gachechiladze

P4: Bridging finite dimensional and infinite dimensional quantum systems – simulations and computational power

PIs: Alessandro Ciani, Sevag Gharibian

P5: Towards Software for Fault Tolerant Quantum Computing

PIs: Jens Eisert, Markus Müller, Robert Wille

P6: Novel quantum algorithms via classical cryptography

PIs: Jens Eisert, Jean-Pierre Seifert

P7: Scaling Verification of Digital Quantum Simulation

PIs: Benedikt Fauseweh, Ben Hermann, Falk Howar

P8: Optimized Quantum Software Testing based on Functional Property Specifications and Quantum

Working Groups

Thanks to the valuable input from the working group discussions at our kickoff event, we were able to launch the trial phase for the working groups.

The working groups aim to foster networking within the SPP by bringing together experts across a wide range of topics that require collaboration. They are formed based on the needs of all SPP participants, operate for a defined period, and can be concluded once their objectives are met. Currently, working groups are reviewed at the SPP's annual meetings and then continue to meet independently—either in person or virtually—according to their needs. Each group is led by an SPP member who organizes meetings, oversees activities, and documents progress and results.

The trial phase, which began in early January and runs until April, focuses on answering key questions: What is the precise goal of the working group? What tasks are necessary to achieve this goal? Should the group continue after the trial phase? And is the overall process for establishing and managing working groups effective?

We started this phase with seven working groups actively engaging in these questions. The seven groups include, for example, the WG Abstraction, WG Compiler, WG Algorithms, and WG QEC (Quantum Error Correction).

The Young Investigators Network (YIN)

The Young Investigators Network (YIN) forms a central element of SPP 2514's efforts to support early-career researchers.

Coordinated by Benedikt Fauseweh (TU Dortmund) and Tobias Stollenwerk (FZ Jülich), the YIN aims to provide opportunities for personal and professional development, strengthen community-building, and foster exchange across institutions and disciplines.

The initial meeting, held during the SPP kickoff in November 2025, laid the foundation for a collaborative and supportive environment for young researchers across the programme. The concrete activities and priorities will be refined together with the members to ensure the YIN develops in line with their interests and needs.

State Verification Techniques
PIs: Otfried Gühne, Malte Lochau

P9: Noise-aware Quantum Programming (NawaQ)
PIs: Benjamin Kaminski, Tobias Stollenwerk

P10: Seamless Development of Quantum Software with Stakeholder-Specific Views
PIs: Wolfgang Mauerer, Ina Schaefer

P11: Attestation for verification and validation in the quantum computing stack
PIs: Jasmin Meinecke, Jean-Pierre Seifert, Janik Wolters

P12: Compilation Environment and Benchmarking for Trapped-ion Quantum Computing
PIs: Ferdinand Schmidt-Kaler, Robert Wille

P13: ConAD-QC: Construction of Advanced Dynamic Quantum Circuits: Towards Resource Optimization and Fidelity Improvement
PIs: Rolf Drechsler, Abhay Kole

Organization

Malte Lochau
(University of Siegen)

Benedikt Fauseweh
(TU Dortmund / DLR)

Anna Pappa
(TU Berlin)

Benjamin Kaminski
(Saarland University)

Join Us at Q-STAV in Bern!

This year, on February 23th, the international workshop on quantum software engineering, previously known as the Quantum Software Engineering MeetUp (QSE), will take place in Bern, Switzerland, under its new name: Q-STAV.

The workshop brings together researchers from classical software engineering and quantum computing to jointly discuss current developments and future directions in the emerging field of quantum software engineering.

To enable today's and future developers of quantum software to fully leverage the potential of quantum computing, there is a growing need for software, tools, and engineering techniques—well established in classical software engineering—to be made available for the quantum computing stack as well. This requires collaborative research across a wide range of disciplines, including programming languages and software abstractions, compiler construction, software testing and verification, and the development of processes, guidelines, and benchmarks for creating new quantum algorithms and deploying them on target hardware.

For 2026, Q-STAV received 18 submissions, of which 10 were accepted for presentation. The accepted contributions are:

- A. Joch, B. Fauseweh and G. Uhrig
Summary: Entanglement-informed construction of variational quantum circuits
- P. Hopf, E. O. Lopez, Y. Stade, D. Rovara, N. Quetschlich, I. A. Florea, J. Izaac, R. Wille and L. Burgholzer
Integrating Quantum Software Tools with(in) MLIR
- S. Thelen and W. Mauerer
Predict and Conquer: Navigating Algorithm Trade-offs with Quantum Design Automation
- D. Eichhorn, N. Poser, M. Schweikart and I. Schaefer
ProvideQ: Short Overview of a Hybrid Optimization Toolbox
- J. Winklmann and M. Schulz
Optimizing Neutral Atom Rearrangement Times using the HiPARS Sorting Library

Programm Committee

Domenique Unruh
(RWTH Aachen)

Falk Howar
(TU Dortmund)

Ingo Roth
(Technology Innovation Institute)

Jakob Kottmann
(University of Augsburg)

Jan Reiners
(HQS)

Jasmin Meinecke
(TU Berlin)

Jonas Haferkamp
(Uni Saarbrücken)

Martin Schulz
(TU München)

Robert Wille
(TU München)

Sebastian Bock
(Fraunhofer Fokus)

Tobias Stollenwerk
(FZ Jülich)

Wolfgang Mauerer
(OTH Regensburg/Siemens)

Adrián Marín Boyero
(University of Siegen)

- L. Müller, A. Bärligea, A. Knapp and J. S. Kottmann
PauliEngine: High-Performant Symbolic Arithmetic for Quantum Operations

- Y. Chen, Y. Wang, C. Mendl and H. Seidl
Classical Compiler Passes, Quantum Edition: Static Analyses for Quantum Programs

- L. Southall, J. Ammermann, R. Kelmendi, D. Eichhorn and I. Schaefer
Investigating Retargetability Claims for Quantum Compilers

- X. Guo and M. Schulz
Hardware-Efficient Neural Networks for Low-Latency Multiplexed Superconducting Qubit Readout

- J. Eisinger, F. Schmidt-Kaler, U. Poschinger, L. Schmid, D. Schoenberger, R. Wille and J. Hilder
Computational capabilities of the trapped ion quantum computer and optimized compilation strategies

As keynote speaker, Q-STAV will welcome Ivano Tavernelli from IBM Zurich, who will share his insights into the ongoing and future work in quantum computing.

A detailed program can be found [here](#):

We highly encourage all interested researchers and practitioners to join Q-STAV in Bern, on February 23th, and participate in the exchange of perspectives and ideas shaping the future of quantum software engineering!