P5: Towards Software for Fault Tolerant Quantum Computing
Members: Prof. Dr. Jens Eisert (FU Berlin), Prof. Dr. Markus Müller (RWTH Aachen, FZ Juelich), Prof. Dr. Robert Wille (TUM), Laura Herzog (TUM)
Building and operating large-scale quantum computers that are capable of running quantum applications that outperform classical supercomputers, or yield practical value, will require fault-tolerant quantum error correction. Since quantum systems are prone to decoherence, active detection and correction of errors during storage and processing of quantum information is essential to guarantee reliable computational output of quantum algorithms. Importantly, this requires on the one hand quantum error correcting codes that enable sufficiently powerful (universal) error-corrected quantum gate operation. On the other hand, implementation of these operations requires efficient quantum circuits which obey fault-tolerant design principles to prevent the uncontrollable proliferation of errors, and efficient fast decoders to classically process error syndrome information. However, most current state-of-the-art quantum circuit compilation and synthesis methods do not take error-correction and fault-tolerance into account at all – giving rise to a fatal gap between required and existing software for the operation of scalable error-corrected quantum computers. As a result, the construction of fault-tolerant quantum circuits is often performed manually (a tedious task which eventually is not scalable) and frequently ignores specific capabilities and constraints of actual physical quantum hardware. In this project, we aim to take first steps towards closing this severe gap by focusing on several concrete problems in the vast field of fault-tolerant circuit compilation. We accept that this challenge can only be reasonably tackled by bringing expertise from quantum information theory, physics, and software design together. We will develop methods that combine novel theoretical techniques, considerations from physical hardware constraints, as well as automated tools for fault-tolerant compilation. By this, we aim to lay the foundation for an envisioned comprehensive, automated circuit compilation framework for scalable fault-tolerant quantum computation.
Publications
Related Publications
Following is a list of papers that are related to P5. Some of the mentioned papers have been published in previous projects, but are highly related to P5.
Analog information decoding of bosonic QLDP codes
L. Berent, T. Hillmann, J. Eisert, R. Wille, J. Roffe
2024. PRX Quantum 5. American Physical Society. DOI: 10.1103/PRXQuantum.5.020349.
Decoding quantum color codes with MaxSat
L. Berent, L. Burgholzer, P.-J. H.S. Derks, J. Eisert, R. Wille
2024. Quantum 8. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. DOI: 10.22331/q-2024-10-23-1506.
The XYZ ruby code: Making a case for a three-colored graphical calculus for quantum error correction in spacetime
J. C. M. de la Fuente, J. Old, A. Townsend-Teague, M. Rispler, J. Eisert, M. Müller
2024. PRX Quantum 6. American Physical Society (APS). DOI: 10.1103/prxquantum.6.010360.
Localized statistics decoding: A parallel decoding algorithm for quantum low-density parity-check codes
T. Hillmann, L. Berent, A. O. Quintavalle, J. Eisert, R. Wille, J. Roffe
2024. DOI: 10.48550/arXiv.2406.18655.
Demonstration of fault-tolerant universal quantum gate operations
L. Postler, S. Heuβen, I. Pogorelov, M. Rispler, T. Feldker, M. Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, R. Blatt, P. Schindler, M. Müller, T. Monz
2022. Nature 605. pp. 675–680. DOI: 10.1038/s41586-022-04721-1.
Automated Synthesis of Fault-Tolerant State Preparation Circuits for Quantum Error-Correction Codes
T. Peham, L. Schmid, L. Berent, M. Müller, R. Wille
2025. PRX Quantum 6. American Physical Society. DOI: 10.1103/PRXQuantum.6.020330.
Deterministic Fault-Tolerant State Preparation for Near-Term Quantum Error Correction: Automatic Synthesis Using Boolean Satisfiability
L. Schmid, T. Peham, L. Berent, M. Müller, R. Wille
2025. Proceedings of the Design, Automation and Test in Europe Conference. DOI: 10.48550/arXiv.2501.05527.
Domain Wall Color Code
K. Tiurev, A. Pesah, P.-J. H. S. Derks, J. Roffe, J. Eisert, M. S. Kesselring, J.-M. Reiner
2024. Phys. Rev. Lett. 133. American Physical Society. DOI: 0.1103/PhysRevLett.133.110601.
Name | Title | Group | |
---|---|---|---|
Eisert, Jens | Prof. Dr. | Freie Universität Berlin, Group Leader 'Quantum many-body theory, quantum information theory, and quantum optics', Helmholtz Center Berlin | jense ∂does-not-exist.zedat fu-berlin de |
Müller, Markus | Prof. Dr. | FZ Juelich, Peter Grünberg Institut, Group Leader 'Theoretical Quantum Technology', RWTH Aachen, Group Leader 'Theoretical Quantum Technology' | markus mueller ∂does-not-exist.fz-juelich de |
Wille, Robert | Prof. Dr. | Technical University of Munich, School of Computation, Information and Technology, Group Leader 'Design Automation' | robert wille ∂does-not-exist.tum de |